
Why Projects Fail
and what you can do about it

A presentation by Jenny and Andrew
for NYC CitySPIN / PMINYC

October 9, 2007

P
ho

to
 b

y 
D

an
 T

ay
lo

r (
C

C
 li

ce
ns

e)



Textbook on software project
management

Used as a textbook in
university graduate software
engineering courses

Focuses on practices aimed at
solving specific project
problems

(like the ones we’ll talk about
tonight)

Published in 2005 (322 pages)

Applied Software Project Management



Head First PMP
Second-best selling PMP

preparation guide, after only six
months on the market

Thousands of copies sold in the
last quarter alone

Rave reviews from members of
the PMBOK® Guide leadership
team (“by far the best PMP
exam preparation book I have
reviewed” - Dennis Bolles, PMP)

Uses a unique style with humor,
graphics and an emphasis on
cognitive learning principles to
help people understand the
concepts without rote
memorization

Published in 2007 (692 pages)



Coming Soon - Head First C#
A brain-friendly guide to

learning the C#
programming language

Aimed at novices and
intermediate programmers
unfamiliar with C#

Manuscript will be complete
and tech reviewed within the
next three weeks

Which is why we’ve been so
slow to answer e-mail lately

To be published late 2007
(650 pages)



Who we are…

Jenny and Andrew truly believe that with better development practices
and good project management habits, we can all build better software.

Jennifer has managed
large software teams
distributed over
multiple continents
for billion-dollar
companies

She is a PMP-certified
project manager with
a strong background
in quality
management and
software testing

Andrew is an
independent consultant
hired by software
engineering contracting
companies to manage
large-scale, globally
distributed software
development teams

He is a graduate of the
School of Computer
Science at Carnegie
Mellon University and is
a PMP-certified project
manager

Andrew and Jenny each have over15 years of experience in softwareengineering, and have been workingtogether since 1998



WARNING: This is NOT an
academic presentation

The topics we are about to cover may
be deadly serious, but we won’t be

If you want academic slides, we’ve got ‘em:
http://www.stellman-greene.com/slides



Not all failures are this easy to spot…

…but some
projects do fail
spectacularly.

The Tacoma
Narrows Bridge
project failed
before the first
yard of concrete
was poured. There was nothing wrong with the construction.

Poor design and badly planned c
ost cutting in

materials led to an unfortunate
 end.



“This time it’s different…”
There’s an old saying about how there are a million
ways to fail, but only one way to be right. When it
comes to projects, nothing’s further from the truth.
Projects fail the same few ways over and over again.

Don’t go in the basement!
Software projects are a lot like cheesy horror movies.
After you’ve seen a few of them, you know that the first guy
to leave the group is going to get an axe in his head. Projects
are the same way. People keep making the same mistakes
over and over, and it keeps getting their projects killed.



You know you’re on a failed project when…
A judge in 1964 said, “I don’t know how to define
pornography, but I know it when I see it.” And the
same goes for failing projects - we all know when
we’re on one that’s sinking.

What does a failing project look like?
You know your project failed if it got aborted and everyone
was laid off. But there are other, less obvious kinds of failure:
The project costs a lot more than it should.
It takes a lot longer than anyone expected.
The product doesn’t do what it was supposed to.
Nobody is happy about it.



Sometimes failure seems normal
Nobody sets out to fail, but for some reason people
just accept that a lot of software projects won’t deliver
on time, under budget with the expected scope intact.
But talking about what causes failure makes people
uncomfortable, because nobody wants to give or
take that kind of criticism.

A show of hands, please…
We’ve never met a single professional software
engineer with more than a few years of experience
who hasn’t been on at least one failed project.
Are there any here?



Four basic ways projects can fail
There are plenty of ways that you can categorize
failed projects. We like to think of them like this:

Things the software does (or doesn’t do)
How your project doesn’t quite meet the needs of the
people you built it for

Things the team should’ve done
Once in a while, it really is the team’s fault

Things that could have been caught
…but weren’t until it was way too late.

Things the boss does
Classic management mistakes that can damage the project



Things the software does (or doesn’t do)
It seems pretty obvious that you
should know what the software’s
supposed to do before you start
building it... not that that stops
us.

We only find serious
problems after we’ve built
them into the software

We have big, useless
meetings that fail to figure
out what the software’s
supposed to do

Scope creep
90% done, with 90% left

to go.



Up close: Use cases can help you avoid requirements problems

Learn more about use cases here: http://www.stellman-greene.com/usecase

Use cases are a deceptively simple way to document every planned
interaction between the users (and other actors) and the software.



The team could have done the
work more efficiently, if only we’d
taken the time to think it through.

Padded estimates compensate
for unknowns.

Project teams will just pick a
deadline and stick to it, no
matter what basic reason and
common sense tell them.

Somehow non-programming
tasks always seem to get cut
when the deadline gets closer.

Misunderstood predecessors
lead to cascading delays.

Things the team should’ve done



Up close: Wideband Delphi keeps estimates honest

We cover Wideband Delphi in detail in the Estimation chapter of
Applied Software Project Management - download the PDF here:

http://www.stellman-greene.com/chapter3

Wideband Delphi is a repeatable estimation process that guides
your experts and team members so their estimates converge accurately.



Which would you choose: a well-
built program that doesn’t do what
you need or a crappy one that’s
irritating to use and does?

Getting a few tech support
people to “bang on the
software” is not testing.

Maybe we could’ve caught
that design problem before the
code was built.

Maybe we could’ve caught
that code problem before we
went to test.

“Beta” does not mean “use at
your own risk.”

Things that could have been caught



Up close: Don’t overlook your acceptance criteria!
It’s short-circuited far too often in favor of user acceptance testing,
but, acceptance testing is about more than just user acceptance.



Things the boss does
Some problems start with
senior managers, others start
with us PMs. But they can
all sink the project.

Unmanaged changes
Micromanagement
Over-reliance on gut

instincts
Tunnel vision
An artificial “wall” that

the business puts up to
disconnect from the
engineering team



Up close: A Vision & Scope Document keeps
everyone on the same page
The Vision and Scope document is where you define who needs the
product, what they need it for, and how it will fulfill those needs.



What you can do about it

Some easy ways to make sure your project doesn’t fail:
Tell the truth all the time
Trust your team
Review everything, test everything
Check your ego at the door
The fastest way through the project is the right

way through the project



 Repeat after us: “Practices, practices, practices.”
The solutions we talked about are only
a few small steps towards a better
software process.

Process improvement starts with
setting concrete goals and
making incremental
improvements.

They’re good solutions to
specific problems, but they
might not solve your problems.

There are lots more solutions
where those came from. And the
ones we chose were the ones that
we could explain quickly.

Make sure the solutions you
choose address the problems that
hurt the most.



The talent is there… the project management’s not.

Hoover Dam was finished two
years early, and under budget.
Software’s not so different that
we can’t engineer it just as well.

Our problems have, for
the most part, been solved.

Over and over and over
again. Seriously.

We just have to stop
ignoring the solutions.

Do you think your project will take

more effort than this one?



One last quick note from the O’Reilly marketing department

Buy these
books

And check out our blog, “Building Better Software”
http://www.stellman-greene.com/

We’ll post these slides in the next few days.


