
… and what you can do about it

A presentation by Jennifer Greene and Andrew Stellman

Why Projects Fail…

Even if it’s not
your fault!

P
ho

to
 b

y
D

an
 T

ay
lo

r (
C

C
 li

ce
ns

e)

These are the slides for our Why Projects Fail
talk. We’ve given it many times, and it always
gets a good response. If you’d like us to come

and give it for your group or organization,
contact us at http://www.stellman-greene.com.

Andrew Stellman started
programming in the 80s, and
lost count of how many
languages he’s worked with.

He’s led teams of
programmers,
requirements analysts
and process engineers.

Jennifer Greene’s spent the last 20 years or so managing development and testing teams.

Jenny and Andrew truly believe that with better development practices
and good programming habits, we can all build better software.

She’s currently doing
consulting and training
for a group with a large
(500 person) IT team.

Who we are…

Our books…

2008 (1st ed)
2010 (2nd ed)

2005

2007 (1st ed)
2009 (2nd ed)

2010

WARNING: This is NOT an
academic presentation

The topics we are about to cover may
be deadly serious, but we won’t be

If you want academic slides, we’ve got ’em:

http://www.stellman-greene.com/slides

Not all failures are this easy to spot…
…but some

projects do fail
spectacularly.

The Tacoma
Narrows Bridge
project failed

before the first
yard of concrete

was poured.
There was nothing wrong with the construction.

Poor design and badly planned
cost cutting in

materials led to an unfortunate
end.

If this video doesn’t play, try using a newer version of Acrobat – or you can download the video here:
http://www.stellman-greene.com/GallopingGertie

There’s an old saying about how there are a million �

ways to fail, but only one way to be right. When it �

comes to projects, nothing’s further from the truth. �

Projects fail the same few ways over and over again.

Don’t go in the basement!
Software projects are a lot like cheesy horror movies. After you’ve

seen a few of them, you know that the first guy to leave the group is going

to get an axe in his head. Projects are the same way. People keep making

the same mistakes over and over, and it keeps getting their projects killed.

“This time it’s different…”

A judge in 1964 said, “I don’t know how to define�
pornography, but I know it when I see it.” And the �
same goes for failing projects - we all know when �
we’re on one that’s sinking.

What does a failing project look like?
You know your project failed if it got aborted and everyone
was laid off. But there are other, less obvious kinds of failure:

!   The project costs a lot more than it should.

!   It takes a lot longer than anyone expected.

!   The product doesn’t do what it was supposed to.

!   Nobody is happy about it.

You know you’re on a failed project when…

Nobody sets out to fail, but for some reason people just
accept that a lot of software projects won’t deliver on time,
under budget with the expected scope intact. But talking
about what causes failure makes people uncomfortable,
because nobody wants to give or take that kind of criticism.

A show of hands, please…
Jenny and I have never met a single professional
developer, tester or project manager with more than a
few years of experience working on software projects who
hasn’t been on at least one failed project.

Are there any here?

Sometimes failure seems normal

Four basic ways projects can fail
There are plenty of ways that you can categorize failed projects. I
like to think of them like this:

!  Things the boss does�
Classic management mistakes that can damage the project

!  Things the team should’ve done �
Once in a while, it really is the team’s fault

!  Things the software does (or doesn’t do)�
How your project doesn’t quite meet the needs of the people
you built it for

!  Things that could have been caught�
…but weren’t until it was way too late

Some problems start at the top…
and when we’re managing teams
(or when we’re leading our
projects), that means a lot of
problems that affect other people
start with us.

!  Unmanaged changes

!  Micromanagement

!  Over-reliance on gut instincts

!  Tunnel vision

!  An artificial “wall” that the
business puts up to disconnect
from the engineering team

Things the boss does

Like it or not, when you’re leading a project team you’re the boss!

Up close: A Vision & Scope Document keeps everyone on the same page

The Vision and Scope document is where you define who
needs the product, what they need it for, and how it will
fulfill those needs.

The team could have done the work
more efficiently, if only we’d taken
the time to think it through.

!   “It’ll take about three weeks…”

!   Padded estimates compensate for
unknowns.

!   Project teams will just pick a
deadline and stick to it, no matter
what basic reason and common
sense tell them.

!   Somehow non-programming tasks
always seem to get cut when the
deadline gets closer.

!   Misunderstood predecessors lead
to cascading delays.

Things the team should’ve done

Up close: Wideband Delphi keeps estimates honest

We cover Wideband Delphi in detail in the Estimation chapter of
Applied Software Project Management - download the PDF here:

http://www.stellman-greene.com/chapter3

Wideband Delphi is a repeatable estimation process that
guides your experts and team members so their estimates
converge accurately.

The

Things the software does (or doesn’t do)

!  We only find serious problems
after we’ve built them into the
software

!  We have big, useless meetings
that fail to figure out what the
software’s supposed to do

!  Scope creep

!  90% done, with 90% left to go.

It seems pretty obvious that you should know what the
software’s supposed to do before you start building it... not
that that stops us.

Up close: Use cases can help you avoid requirements
problems

Learn more about use cases here: http://www.stellman-greene.com/usecase

Use cases are a deceptively simple way to document every planned
interaction between the users (and other actors) and the software.

Which would you choose: a well-
built program that doesn’t do
what you need or a crappy one
that’s irritating to use and does?

!  Getting a few tech support people
to “bang on the software” is not
testing.

!  Maybe we could’ve caught that
design problem before the code was
built.

!  Maybe we could’ve caught that
code problem before we went to test.

!  “Beta” does not mean “use at your
own risk.”

Things that could have been caught

Up close: Don’t overlook your acceptance criteria!
It’s short-circuited far too often in favor of user
acceptance testing, but, acceptance testing is about
more than just user acceptance.

Some easy ways to make sure your project

doesn’t fail:

!   Tell the truth all the time

!   Trust your team

!   Review everything, test everything

!   Check your ego at the door

!   The fastest way through the project is the right

way through the project

What you can do about it

Repeat after me: “Practices, practices, practices.”
The solutions I talked about are only a few
small steps towards a better software
process.

!  Process improvement starts with setting
concrete goals and making incremental
improvements.

!  They’re good solutions to specific
problems, but they might not solve your
problems.

!  There are lots more solutions where those
came from. And the ones we chose were
the ones that we could explain quickly.

!  Make sure the solutions you choose
address the problems that hurt the most.

One last quick note from the marketing department…

Buy these
books!

And check out our blog, “Building Better Software”
http://www.stellman-greene.com/

Thanks for coming! Any questions?

