
Why Projects Fail

…and what you can do about it.
A presentation by Jenny and Andrew

P
ho

to
 b

y 
D

an
 T

ay
lo

r (
C

C
 li

ce
ns

e)

This presentation was originally shown at a joint IASA / NYJavgSIG meeting on June 26, 2007 - http://www.stellman-greene.com/



Who we are…

Andrew started
programming in the 80s, and

lost count of how many
languages he’s worked with.

He’s led teams of
programmers,
requirements analysts
and process engineers.

Jenny’s spent the last 15
years or so working in
software quality

Jenny and Andrew truly believe that with better development practices
and good programming habits, we can all build better software.

She’s currently
running a large
distributed
development team
for a global media
company



Before we forget… are there any Microsoft
C# people in the audience?
Our current project is Head First C#, and we’re looking for
another technical reviewer. If you’re a hardcore C# guru and
want to help make a Head First book better, please talk to us
after we’re done.



So why do projects fail?
Good question.

If you can recognize a failing project before
it crashes and burns, you can usually save it.



“This time it’s different…”
There’s an old saying about how there are a million
ways to fail, but only one way to be right. When it
comes to projects, nothing’s further from the truth.
Projects fail the same few ways over and over again.

Don’t go in the basement!
Software projects are a lot like cheesy horror movies. After
you’ve seen a few of them, you know that the first guy to
leave the group is going to get an axe in his head. Projects
are the same way. People keep making the same mistakes
over and over, and it keeps getting their projects killed.



You know you’re on a failed project when…
A judge in 1964 said, “I don’t know how to define
pornography, but I know it when I see it.” And the
same goes for failing projects - we all know when
we’re on one that’s sinking.

What does a failing project look like?
You know your project failed if it got aborted and everyone
was laid off. But there are other, less obvious kinds of failure:
The project costs a lot more than it should.
It takes a lot longer than anyone expected.
The product doesn’t do what it was supposed to.
Nobody is happy about it.



People hate the word “failure”.
Nobody sets out to fail. Most projects start with
a good idea and talented people. (Not all, but
most.) But talking about failure makes people
uncomfortable, because nobody wants to give
or take that kind of criticism.

A show of hands, please…
We’ve never met a single professional software
engineer with more than a few years of experience
who hasn’t been on at least one failed project.
Are there any here?



Four basic ways projects can fail
There are plenty of ways that you can categorize
failed projects. We like to think of them like this:

Things the boss does
Ways your management can screw up your project for you

Things the software does (or doesn’t do)
How your project doesn’t quite meet the needs of the
people you built it for

Things the team should’ve done
Yes, sometimes we do mess it up too

Things that could have been caught
…but weren’t until it was way too late.



Things the boss does
Let’s face it… a lot of project
problems start at the top.

Tunnel vision
Over-reliance on gut

instincts
Repeated false starts
Mid-course corrections
An artificial “wall” that

the business puts up to
disconnect from the
engineering team



Things the software does (or doesn’t do)
It seems pretty obvious that you
should know what the software’s
supposed to do before you start
building it... not that that stops
us.

We only find serious
problems after we’ve built
them into the software

We have big, useless
meetings that fail to figure
out what the software’s
supposed to do

Scope creep
90% done, with 90% left

to go.



The team could have done the
work more efficiently, if only we’d
taken the time to think it through.

Padded estimates compensate
for unknowns.

Project teams will just pick a
deadline and stick to it, no
matter what basic reason and
common sense tell them.

Somehow non-programming
tasks always seem to get cut
when the deadline gets closer.

Misunderstood predecessors
lead to cascading delays.

Things the team should’ve done



Which would you choose: a well-
built program that doesn’t do what
you need or a crappy one that’s
irritating to use and does?

Getting a few tech support
people to “bang on the
software” is not testing.

Maybe we could’ve caught
that design problem before the
code was built.

Maybe we could’ve caught
that code problem before we
went to test.

“Beta” does not mean “use at
your own risk.”

Things that could have been caught



What you can do about it

Some easy ways to make sure your project doesn’t fail:

Tell the truth all the time
Trust your team
Review everything, test everything

All developers are created equal
The fastest way through the project is the right

way through the project



The talent is there… the engineering’s not.
Hoover Dam was finished two
years early, and under budget.
Software’s not so different that we
can’t engineer it just as well.

Our problems have, for the
most part, been solved.

Over and over and over
again. Seriously.

We just have to stop ignoring
the solutions.

Also, hire awesome
consultants who know what
they’re doing and have solved
these problems before.

(us.)

Do you think your project is more

complicated than this one?



One last quick note from the O’Reilly marketing department

Buy these
books

And check out our blog, “Building Better Software”
http://www.stellman-greene.com/


